
1

Local Browsing

Information Seeking Tailored

to Mobile Devices

Semester Thesis

Sebastian Wendland, Samuel Zihlmann, Dominik Bucher, D -ITET

wendlans@ee.ethz.ch, samuezih@ee.ethz.ch, dobucher@ee.ethz.ch

September 2012

Management of Information Systems / Computer Science Group,

ETH Zurich, 8092 Zurich

Supervisor Dr. Fabio Magagna

Prof . Dr. Juliana Sutanto / Prof. Dr. Bernhard Plattner

With Assistance from Simon Schweingruber , Nokia Switzerland

2

Contents
Abstract.. 4

Introduction ... 5

Problem Definition .. 6

Related Work .. 7

Existing Solutions .. 9

Comparison Framework... 9

Google Mobile Search...10

Local.ch ...10

Browser (Embedded Search Provider)..11

Nokia Maps..12

The Local Browsing Solution ...13

System overview ..13

User Interface Frontend ...13

Schematic Overview ...13

The Implementation ...15

Server Backend ..18

Server Backend Overview ...18

MVC - Model View Controller ..19

Overview of the most important functions ...19

The Crawler ...20

The Domain Statistics Collection ..21

The URL Collection ..21

The Word Collection ...22

The Web Site Collection ..22

How the Crawler Works ..22

The Recommender ...23

History Aggregation ..23

Results Aggregation ..24

Keyword Aggregation ..25

The API / Communication Interface ...27

The communication protocol ...27

The Logging System ..27

The Job System ..28

The Database Interface ...28

3

Data types ..28

Functions ...29

Database Structure ...29

MongoDB ...30

Results ..31

Any Bar Close by (Starting at Zurich Main Station) ..31

Spaghetti Factory (at Location 47.37/8.54)...32

Location Close to Restaurant ...32

At Home...32

NZZ (Accessed Before) ..33

Anything Interesting Close by ..33

Train Schedules at Zurich Main Station ..34

Telephone Number of Co-Worker ...34

Conclusion ...35

Outlook ...36

Acknowledgements ..37

References...38

4

Abstract

The motivation for this paper is to improve search on mobile devices. As search usually is performed

in the same way as on the desktop, search providers focus on depth, i.e. to find documents about

very specific topics. However, search on mobile devices is much more diverse and people often want

to browse the web for interesting things around them, for news articles or for content that other

people tagged as being valuable.

The paper presents the implementation of a search engine optimized for mobile devices called Local

Browsing. The application consists of a backend which is responsible for crawling the web and

recommending datasets to users. The crawler fetches keywords, which are selected from web sites

by frequency and windowing, further processed, filtered and weighted. The recommender on the

other hand provides users with the best possible results based on several user inputs. These inputs

include keywords, location, user history, general history and more. The recommendation is done by

aggregation and weighting of matching results. The frontend is implemented independently and

connects to the backend via the Local Browsing REST API. To find an optimized user interface, typical

search use cases on mobile devices are analyzed and compared.

As result we present a running prototype which is compared to different search providers. In

comparison it outperforms other search engines for typical mobile searches. For general depth

searches a comparison is difficult as our current dataset only covers a tiny bit of all the information

available on the web.

5

Introduction

Mobile internet is gaining on importance. It is expected that in short future more people access the

internet from their mobile phones than from desktop computers [1]. Studies have shown that

searches on mobile devices vary greatly from those on desktop computers [2] [3]. Whilst we mostly

perform depth-searches on the desktop, we tend to do quick surface and transactional searches on a

mobile phone [4]. These quick searches include queries for stuff which is physically close to us (e.g.

restaurants, bars, theaters, bus stops, and more), which depend on our situation (e.g. train

schedules, hotels and taxi telephone numbers when we just arrived at an airport) or just searches to

discover fun stuff which is around our current location. Nevertheless the experience in using the

mobile internet for search has mainly stayed the same as on the desktop.

To overcome the limitations of current search engines, the Chair of Management of Information

Systems at the ETH Zurich has been doing research for several years in analyzing how people seek

information on their mobile phones and how this process can be optimized [5] [6] [7] [8]. This thesis

covers the implementation and concretization of a system as proposed in [9]. The completed system

can be split into two parts: The backend and the user interface.

The logic working in the background of a search engine system has a huge impact on our perception

of the system (even though as users we only interact with the system through the user interface).

Next to general parts like a database, logging system, job system and server administration this

backend primarily means the crawler and the recommender. Whilst a crawler collects, filters,

assembles and stores data from the internet, a recommender aggregates a set of search results

based on various user inputs. Based on the studies in [9] we take the proposed solutions for a

recommender further by implementing and adjusting them. In this thesis there is also some research

conducted on a specialized keyword crawler that aggregates keywords from websites, which is in

stark contrast to the usual full-text indexing and allows for more efficient storage of the web site

indexes. It also allows the user to search for specific keywords and the system to recommend such

keywords to the user.

The implementation of the user interface is done on Windows Phone 7 thanks to assistance on this

platform from Nokia Switzerland. The application is tested with different search queries against

existing solutions like Google, Bing, local.ch and Nokia Places. The performance is measured in two

ways:

 Number of inputs: The optimized application layout should allow a user to find the desired

results with as little clicks as possible. If a user has to click, clicks on bigger buttons (the on-

screen keyboard features tiny buttons for example) are better.

 Satisfaction and acceptance of the new system: This is measured by counting how many of

the desired results the users find, how often users use the application, what their preferred

search queries are (if users still type in keywords, as they would with any traditional search

engine, the new approach didn’t provide any benefits to the user).

The result of this thesis is a fully working system for search tailored to mobile phones which is further

extendable to conduct more research, tests and optimizations. The phone application will be made

available for download from the Windows Marketplace in short future.

6

Problem Definition

Starting from the fact that text input is rather clumsy on a mobile phone, a basic requirement for a

mobile search engine system is to reduce the amount of necessary text input. Also, people tend to

search for different things on their phones than they do on desktop computers. The search is rather

transactional, location-based, situation-based or for entertaining purpose, in contrast to an in-depth

search on a desktop computer [3] [4] [2] [9].

The solution provided by this thesis is based on keywords. If the user doesn’t have to type in his own

keywords but instead can select some from a given set, the number of clicks can be greatly reduced.

There are two main points where a search engine based on keywords has to excel:

 Providing the user with interesting keywords: When the user starts the application he wants

to see all keywords that could possibly interest him so he doesn’t have to enter them

himself.

 Providing the user with interesting results: Given a set of selected keywords, the results have

to be what the user searched for, given his input, location and situation.

Of course, in order to optimize on both these points, a lot of background work has to be done. A

specialized crawler has to search for keywords, locations and possibly situation-interesting elements

on websites and other data on the internet. This data has to be stored in a meaningful way that also

allows to weight different results. Like with any search engine robot, decisions have to be made

which information should be stored. Once the data is available, it has to be cleaned and processed

periodically, checked for faults and also be represented in a meaningful way for the developers

themselves.

As it is impossible to know what users will find interesting without collecting data from users, the

backend system also has to provide user or device identification and storage and processing of user

generated data. This data includes search histories, locations and browse histories.

Finally, the recommender has to aggregate the data from all the different sources and output a

sorted list of results. For this task, four categories are distinguished and aggregated in the end:

 Location based results: Results that are interesting because they are physically close to the

user.

 User history based results: Results that a user accessed before.

 General history based results: Results that a majority of users has accessed before and finds

interesting.

 Situation based results: Results based on the users situation. As an example think of web

sites of cafés in the morning and web sites of cinemas in the evening.

The system can expect the following input from the application: user identification, location,

keywords, time. This list can be extended so the resulting system must be modular enough to be

extendable in future.

The complete application should try to optimize on the following points:

7

 Clicks to results: Users should have to press the least amount of clicks to get to the desired

result. Clicks themselves can be categorized, whereas a click on a small button is less

convenient than a click on a big button. Text input thus takes a very bad stand as the

keyboard buttons are usually very small.

 Location-based results: The mobile search engine should be aware of the position of the user

to be able to respond readily to requests for points of interests around the user. This also

induces a location-awareness of the search results (i.e. web sites) themselves.

 Situation-based results: Depending on the time of day, the current weather, if the user is at

home or not, if he arrived somewhere newly, if he is doing sports, and so on, the search

application should adjust the results.

 Browse-factor: The search application should be entertaining and allow the user to easily

discover and browse for possibly interesting stuff.

And as for every application that wants to get accepted by users, it should of course also be

appealing, fast and fun.

Related Work

There has been done a lot of research on search engines and recommenders, both at universities

and in industry. Also, a lot of work has been done on keyword and location extraction. For all the

topics some of the work that is closely related to this thesis (in the context of mobile search engines

and keyword based search) is presented.

The paper [10] describes a way to extract keywords and use them to cluster web sites with the

intention to create tag clouds that give the user possibility to navigate within his search. The cloud

generation is done via self-organizing maps that take into account the textual content of tagged

documents. In [11] keywords are extracted from Wikipedia article plaintexts by applying the Term

Frequency-Inverse Document Frequency algorithm, which is further described in [12]. The way the

algorithm works is stated as follows by the paper: “The key assumption is that if a term appears

frequently in one document, but not in the overall collection, it is reasonable to consider it particularly

descriptive for this document” [11]. The algorithm was refined by applying it to terms of one, two and

three words length which were compared to a general -purpose reference corpus compiled from

newspaper texts.

The document [13] elaborates on the way of how to link web sites to locations (i.e. by extraction of a

location from the unstructured data) and also on how to use the data to create link distance between

topical pages. The whole crawler can be used to do focused crawling, geoparsing, indexing and

weighting. The paper [8] describes other approaches for location based services – basically

presenting SALT, “an engine that receives web sites as input and equips them with location-tags” [8].

SALT extracts location up to street level and allows for user feedback to refine results.

As for recommending data entries to users, the paper [14] presents an efficient ranking algorithm for

recommender systems based on a random walk model on hypergraphs. The recomme nder algorithm

is capable of capturing the difference between popular and niche objects. Furthermore, a

recommendation list update algorithm is presented which significantly reduces computational

complexity. The whole algorithm doesn’t require any paramete r tuning and thus gets easy to

8

implement. PageRank is described in [15] and is probably the most famous crawler/recommender

algorithm. Based on the link structure web sites are ranked (the more often a web site is referenced,

the higher its rank) which allows for a highly representative rank of importance of web sites. The

paper [16] presents a content-based recommendation method that provides results based on a

user’s recent interest in a web site. The recommendation is done via keyword contexts which are a

set of discriminating words that occur together often (those keywords could capture more semantic

information than a single keyword). The retrieval is done via information retrieval techniques and

association mining techniques.

There are several studies related to the user interface. We mainly focus on the studies about tag

clouds and navigation tiles as those play a central role in the Local Browsing approach.

Popular approaches for an improved search experience are so called tag clouds. A tag cloud is a

collection of words that are more or less coupled to a given topic. A possible way to collect such tags

is word counting, where words are sorted according to their frequency on the web site. Often, the

size of tags in the tag cloud tells a user how often a given keyword appears in a web site. Tag clouds

have been used for desktop web sites for quite some time, even though mostly not for search but for

categorization or providing a user with further interesting topics [17].

Recent applications transferred these tag clouds to mobile devices where they provide a way for the

user to search for topics by refinement of keywords [11]. The author of the paper uses tag clouds as

spatial location descriptors which associate pictures, web sites, posts and articles with keywords and

generate tag clouds where more frequent keywords are displayed in bigger font. The tags are

generated from unstructured textual web content by applying the term frequency-inverse document

frequency algorithm: the more often a term appears in a document, but not in the overall collection,

the more particularly descriptive for this document it is.

Other approaches to the search on mobile devices problem include systems where users are able to

ask each other questions [18]. In this paper map based interfaces are compared with text based

interfaces. For both of those interfaces users could view other queries by users, see or help improve

their results and post their own queries. The conclusion was that a hybrid interface that allows users

to seamlessly switch between maps and lists is accepted very well.

The FaThumb approach brings facet navigation (searching along tags and tag groups) to mobile

devices [19]. FaThumb is a keypad-driven, compact query interface for browsing and searching large

data sets. Facets are hierarchically sorted, within this hierarchy users select tags they like and get

presented all the entries that contain all the tags.

The TapGlance paper [17] describes a new UI that defines a keyset that allows fast navigation within

all applications. The UI is developed because users only have limited time to devote to learning any

given application and would like it if all applications behaved in the same way. The importance of

such a shared design guideline is also shown by the effort Smartphone OS manufacturers spend on

clear and generally usable design guidelines.

Other studies compare different tag cloud layouts [20], integrate the search experience within the

browser (in form of temporal and location information clues) or by extending the amount with which

users can interact with the search engine (by letting the users show queries from other users, by

letting users filter different queries, presenting them on a map, and so on) [21].

9

Existing Solutions

In this section, existing search engines on mobile devices are presented. They are compared using

the framework developed in [5]. The following selection of search engines consists of the most

popular search engines for mobile devices, as well as a selection of search engines that focus on local

search. As we test the application for locations in Switzerland, we choose local.ch, as this is the most

famous local search provider here.

Comparison Framework
As described in [5], the following framework can be used to classify search engines. Classification is

done on datasets, user input and the corresponding output. Table 1: Framework for search engine

classification describes the different possibilities.

Resources
 Data Collection (e.g. unsupervised, manual)

 Semantic Content (e.g. country based, just business or train information)
 Information Type (e.g. text, image, video, audio)

Input

How is the query entered?

 Keyword

 Image

 Audio

Other passively used information?

 Position

 Country

 Language

Output

How are hits displayed?

 List
 Map

 E-Mail

 SMS

How are hits ordered?

 PageRank
 Distance

 User Ranking

 Visible Non-Visible
Table 1: Framework for search engine class i fication

10

Google Mobile Search
Google Mobile Search is probably the most widely used search engine on mobile devices nowadays.

The user interface of the mobile web site is a slightly modified version of Google Desktop Search. It

features additional buttons to directly search for restaurants, cafés and bars. These buttons are a

simple redirection to Google Places which searches for objects nearby, using the user’s location if

enabled. The Google Search app features a text input box, as well as an audio input button. On both

the web site as in the app, user input is usually done via the classical typed keyword input. This

requires a lot of on-screen keyboard typing.

Google uses a lot of different information types, unsupervised as well as manually entered data and

semantic information to calculate results. The query is entered usually as keywords (image search

and applications like Google Goggles allows searching by uploading pictures and the Google Search

application by speech input) with other passive information like location. The output generated is

either displayed as a list or on a map, ordered by PageRank and distance to user.

Local.ch
The Local.ch app features again a classical typed keyboard approach. It can be used to search for

various things, all of which need to have a location though. To simply see what’s around the user’s

location, a swipe to the right brings up a browsing screen. On this screen one can browse by

categories and see the corresponding entries close to one’s location.

In the above classification, Local.ch uses manually collected textual and location information

(telephone book, yellow pages). The user enters text as query and the application returns a list of

results.

Figure 1: Google and loca l .ch apps on Windows Phone 7

11

Browser (Embedded Search Provider)
By entering keywords into the navigation bar, the browser takes you to the Bing search application.

Using a typed keywords based approach, Bing allows you to search for apps, web content, local

content and images. The categories can be chosen with a simple click or swipe and display various

additional information like the location on a map.

The integrated Bing Search uses unsupervised as well as manually collected data, presents results on

lists or maps, ordered by PageRank and distance. User input is handled via text and audio, with

additional information from location.

Figure 2 Embedded Bing search in Windows Phone 7, combined with Bing Maps

12

Nokia Maps
Nokia Maps is an application used for location based search. It does so by typed keywords and by

browsing by category. The results from the Nokia Maps Database are shown on a map around the

user’s location. Clicks on entries show additional information, like web site, telephone number and

more.

Nokia Maps uses manually entered information and semantic data. The data is textual and image

data. User input consists of keywords, the output is presented on a map, sorted by distance.

Figure 3 Nokia Maps

13

The Local Browsing Solution

The following section describes the Local Browsing solution in detail. In a first part, the user interface

frontend is described, in a second part the server backend. The project consists of two theses, where

one (for one person) was the development of the user frontend and the other (for two persons) was

the development of the backend server.

System overview

The whole system can be divided into two main parts: The server backend which handles all kind of

calculations and storing of the necessary data and on the other hand there is the frontend, an

application on a phone which provides a user interface to interact with the calculated data from the

server and also collects new data as shown in Figure 4.

Figure 4: System overview with appl ication and server

The system is designed for the purpose that all heavy computation is done by the backend server .

This ensures that the frontend application runs as smooth as possible with its limited resources.

User Interface Frontend

The following section describes the Local Browsing Windows Phone Application. It tries to fulfill the

requirements in the problem definition by providing functionality to search via tags, to switch

between query inputs and results in a fast way, to give feedback on results and to view web sites.

Schematic Overview
A first observation to make is that you need user generated data to provide the requested features

of the problem definition section. Solely collecting web sites is not going to tell when or at which

places users like to search for which things. Also, to make the whole system scalable, automated

approaches have to be used to ensure users always get the most popular results for any situation.

14

With this in mind and based on [9] the following application flow was designed:

 After the application starts, a device ID is sent to the server. This allows the users to stay

anonymously but still giving him personalized results. Of course, in a later step complete user

authentication should be considered, in the way many big search providers are doing it.

 The server responds with a list of keywords that could be of interest to the user. They are

aggregated by the local browsing recommender which is described later. This recommender

recommends keywords and websites because of several different aspects:

o They are physically close to the user, i.e. their location is within a certain radius to

the user.

o The user used to access this keyword / website before. It is especially valuable, if the

user already accessed it in this same location before.

o A lot of users tend to access this keyword / website. The result is especially valuable

if a lot of users access the website at the same location the user is at the moment.

o The user could be interested in the keyword / website in his current situation.

 The keywords are then displayed in the application. Keywords are represented by buttons,

whereas a click on a button has several effects:

o The keyword is added to the list of currently selected keywords.

o A new set of keywords is requested and displayed.

o A set of results is requested and held ready for the user to see.

 An additional input field allows the user to add keywords that can’t be found in the list, also

to remove them.

 The user can switch between the keywords view and results view at any time to improve his

search results.

Figure 6 gives a schematic layout of the main part of the application. On a first page keywords are

shown. They can be selected and refined by entering in the refinement box or deleting from there.

The keyword boxes might contain additional information such as hints to future keywords, results or

number of results. On a second page the results themselves are displayed. The result boxes display

different information about the results like title, description, distance to current location and more.

Switching between the pages is implemented by the swipe gesture, but other ways might be

acceptable as well (e.g. pressing a button). The only requirement for the switching is that it is fast

and intuitive.

The following section describes the concrete implementation in detail.

User starts
application

Application
sends device

ID and location
to server

Server
responds with

l ists of
interesting

keywords and
intersting

search results

Search can be
refined by

selecting and
changing
keywords

Upon click on
result, server

stores
statistics for

this search to
improve

further results

Figure 5: Search process by us ing Local Brows ing

15

Figure 6: Appl ication UI concept

The Implementation

The application itself features tiles (Windows Metro style buttons) that each display a keyword. The

color of the tile is determined by the importance of the keyword. After testing several different

layouts we decided upon a layout with 4x3 buttons that shows only the keyword itself. This is

integrating well in the Windows Metro design guidelines, gives the keywords enough space to be

displayed and the buttons are big enough to be easily accessible. As these tiles are rather big and

each of them stands for a whole word, navigation is very fast. On startup a screen like Figure 7 (left

side) is shown. Within this screen, the keyword set can be adjusted as liked. Keywords can be added

and removed with a single click, and if for any reason no good keyword can be found, a keyword can

be entered manually as well. For simplicity the term keyword was replaced with tag in the

application. An arrow button gives a different way of switching to the results page and a Bing button

allows searching Bing for the currently selected keywords.

With a single swipe, the results for the current keyword set can be viewed. This allows for very fast

checking for results and leads to a continuous refinement process. The result screen itself (Figure 7

right side) presents the different results with the most important details (title/domain, description

and distance to current location if available) and sorts the results according to their importance. It

also allows viewing the result on a map, requesting more details and under certain circumstances

editing the result (mainly for improving results by giving users the possibility to give their own input).

Those tasks are accessed by a long click which opens a context menu on Windows Phone.

16

Figure 7: Fina l Loca l Brows ing UI on Windows Phone 7, with tag selection (left) and result presentation (right)

Finally, when the user opens a web site, it opens in an internal web browser. This internal web

browser shown in Figure 8 allows the user to give feedback. In addition it also allows the application

to track certain user actions. Both actions are necessary to improve search results further (see also

problem definition section). A click on the Internet Explorer button will open the page in the mobile

browser of the phone, where further data collection is disabled and special actions are available (like

connecting to a https site or displaying flash applications). The thumbs buttons are used to rate the

results, the back button will directly jump back to the results screen (the normal back button will

navigate through the browse history). In addition it is also possible to enter arbitrary URLs and

browse there.

17

Figure 8: Embedded Internet Explorer in Local Brows ing with feedback toolbar on top

Further application parts are not specific to a search application and can be found in many other

applications. For completeness a screenshot of the application info page is provided in Figure 9.

Figure 9: Appl ication info page

18

Server Backend

The following section describes the Local Browsing Server Backend where all the complex

computation and data storage is located.

Smart phones in general have very limited resources compared to a computer. The idea behind the

design of the server backend is to take all necessary input from the phone (frontend), do all the

calculations which require a considerable processing power and send a well formatted result back to

the phone.

Server Backend Overview
The server backend can roughly divided into three different code sections.

 The Model domain which contains all kind of objects and generally accessible controllers , for

example the logger. In the server project this is also called Model as shown in Figure 10.

 The View which is the interface between the frontend and the backend described in the API /

Communication Interface section below. As shown in Figure 10 this part is called Backend

Web Interface which is connected through the internet to the phone.

 The Controller which contains the most important controllers and managers for all kind of

computation, for example the recommenders. In the server project this is also called

Controller as shown in Figure 10 and has additionally a Database Access structure which is

explained in the next text section.

Figure 10: Server backend overview

The Backend Web Interface is the interface between the web (the phone application) and the server,

and is well defined over a known API. It also ensures that no invalid requests from the outside reach

the next layer. The Database Access serves as an additional layer between the controller and a

chosen database. Every access to the database is abstracted in a way that the choice of a database

type is independent from the controllers. For more information see The Database Interface.

To test the functionality of the business logic within the above mentioned code sections and all kinds

of computation or data fetching from external databases, there exists an additional code section

called Unit Tests. These tests are based on the jUnit1 test framework for Java. They can control

1 http://www.junit.org. August 2012

http://www.junit.org/

19

classes from all other sections and are used to ensure the correct behavior of most of the

computations.

MVC - Model View Controller

The used code structure is based on the Model-View-Controller design pattern, which decouples the

business logic from the user interface and the model domain. For this purpose three different

domains were created shown in Figure 11: Design pattern MVC:

 Model domain is used for the program states and also provide a data structure.

 Controller contains the business logic and interactions with internal storage.

 View is mainly used for processing data for visual representation or forwarding them to

another output.

This design makes it possible to change most of the logic computation from the controllers without

the need of modifying the web interface or on the other hand changing the web interface and

reusing the same computations.

Figure 11: Des ign pattern MVC2

Adding new abstract structures in the model domain is also fairly easy, because of its independence

from the other two domains.

Overview of the most important functions

The Local Browsing backend system consists of the following parts:

Crawlers There are specialized crawlers that crawl open platforms for location tagged
web sites and objects. The main web site crawler crawls web sites and extracts
link structure, keyword structure, general web site information and meta
information and creates a linked structure which can be used to generate
results to user queries.

Recommenders There is a keyword recommender that aggregates keywords based on selected
keywords, user ID, location, time, popularity of keywords and other
parameters. To generate results there is the results recommende r that
aggregates objects (e.g. websites) based on the user input and history data.

Application API The application is accessibly publically via the Local Browsing API. This allows
various services to take advantage of the system.

Logging System The logging system is primarily for debugging and optimization of the system
as well as some sort of passive watchdog function (in case of system failures).

2 msdn.microsoft.com/en-us/library/ff649643.aspx. August 2012

20

Job System The job system allows executing various jobs (e.g. crawl jobs) independently
from the main functions of the system. Jobs can be queued, executed
periodically and stopped in case of failure.

Database Interface The database interface is independent of the database and can thus be used
with various database systems in the background (at the time of writing this
thesis we use MongoDB3).

Table 2: Backend components

Figure 12: Backend

The whole specification of the system can be found in the documents “LocalBrowsing Application

Design” and “LocalBrowsing Reommender Specification”. The API documentation can be found in

“LocalBrowsing REST-API Reference”. The following sections give a more detailed insight of this

important functions.

The Crawler
The main web site crawler downloads HTML pages and processes their content. The crawler stores

information in four different collections:

 The Web Site Collection is the collection search queries are run against. This collection

contains all necessary information to find and weight results.

 The Domain Statistics Collection collects various information about the number of crawled

web sites and their domains.

 The URL Collection stores extensive information about web sites. This information is

required to update ranking information on web sites but is not needed for direct queries.

 The Word Collection stores information about words and their distribution in text on

websites. This information can be used by the keyword recommender to recommend words

that are similar, potentially connected or otherwise interesting to the user.

3 www.mongodb.org. August 2012

http://www.mongodb.org/

21

The Web Site Collection is the most important collection, as search queries are run against it. The

other three are crawler-specific. The collections are described in more detail in the following

sections.

The Domain Statistics Collection

The domain statistics collection captures information about the crawled web sites and the domains

they belong to. For each domain (.ch, .com, .net, …) the number of crawled, the number of

uncrawled (links that were collected from web sites but are not crawled yet) and the number of not

crawlable web sites (probably because they were offline, or forbidden for search engine robots) is

stored. The total number of web sites is stored as well.

The URL Collection

The URL collection holds the following fields for each URL (indexes and internal fields are omitted):

URL The unique URL where the further information was extracted.

URL Type The type of the URL is either PARENT or CHILD. A parent site is at the top
level of a domain (e.g. www.google.com).

Top Domain The top domain (e.g. com).

Referenced By A list that contains all other URLs that reference this URL. The list also
contains a number for each entry that tells how many times the web site
was referenced.

Total References The total number of times this web site was referenced.

Crawl Date The date when this URL was crawled the last time.

Import State The import state, this can be UNCRAWLED, CRAWLED, NOT_CRAWLABLE,
ROBOTS_FORBIDDEN and more.

Crawl Time The time it took to crawl and process this URL.

Language The language as found in the meta information. This language will pass on
to words extracted from this web site.

Number of Sentences A number counting the number of sentences found on this web site.

Number of Words A number telling how many words were found on this web site.

Meta Information The complete Meta information from this URL.

Keywords All the keywords from this web site and the number of their respective
occurrences.

References The links this web site references to. This is a list containing all the links and
the number of times they were referenced.

Table 3: Database URL col lection

22

The Word Collection

The word collection stores information about words found in documents, their relations with each

other, their occurrences and so on. This information can be used by the keyword recommender. The

collection holds the following fields:

Word The name of the word.

Number of References The number of times this word occurred overall the documents.

Languages The languages associated with this word. The language is taken from
Meta information of web sites.

Word Window 3 Words that were within the previous or next three words. This can be
used to find words that usually turn up together.

Table 4: Database word col lection

The Web Site Collection

Within the web site collection, entries have the following important fields:

Web site Meta information Meta information is extracted directly from Meta tags. This includes
general Meta information and also specialized Meta information like
language which is further used to classify keywords.

Keywords Keywords are extracted from Meta information and from web site
content. The keywords are weighted according to the number of
occurrences and stored in a sorted list. This is a simple word
frequency approach.

Words In addition to keywords, word structures are extracted and stored in
their separate table. This includes word relationships generated from
windowing, as well as overall word frequency and language.
Windowing is done by storing all words that appear within a window
of three words around the current word. Those words are counted
and stored alongside the original word.

Link Structure References to other websites are stored in an URL collection, as well
as total number of references of an URL.

General URL Information Various side information is stored for every web site. This includes
things as number of words on the pages, number of sentences,
language, crawl status, crawl time, and more. Using this information,
web sites themselves are ranked.

Table 5: Database web s i te col lection

How the Crawler Works

The crawler is implemented as recurring job in the backend. Whenever new sites are added to the

web site collection, they will get crawled on the next crawler pass. The crawler will then follow the

link of the web site added, collect all information on the web site and store it in the database. For

this the crawler uses the HTML processing library jsoup4. Usually, links to other web sites are stored,

but not followed. This is one option amongst others that can be specified when using the crawler

though.

The crawler can of course be run multiple times in parallel or on demand if the amount of newly

added web sites becomes too large for a single crawler to process.

4 www.jsoup.org. August 2012

http://www.jsoup.org/

23

The Recommender
The Local Browsing result recommender is built upon the requirements coming from [9]. This

recommender aggregates objects from four different sources:

 Location-based: Objects that are physically close to the location of the user.

 Situation-based: Objects that are interesting because of the situation the user is in. (not

implemented yet)

 User-history-based: Objects the user accessed before.

 General-history-based: Objects a majority of users accessed before.

The result recommender takes information about web sites and objects from the web site collection,

which is described in the following section.

History Aggregation

For the first recommendation the history is one of the most important source for a good result. The

History is only calculated once per session and is cached as a hash table for every further request

from the phone. Only a specific threshold between the old and the new location of the user will

trigger a new calculation.

All data comes from the history database collection which is described in later chapter and is

collected with four different queries. Two of them search for history entries near the location of the

user, all already browsed websites around this location. First, all history entries without taken

account of the current user ID are collected and secondly only the browsed web sites from the

current user are taken. For all queries the resulting list of web sites is sorted by the number of views

in a defined period of time which gives every web site a weight. Both queries are merged together by

adding those weights multiplied with two different factors (represented as F in Figure 13). The

merged result of these two queries is then merged with the combined result of the global history

(without taken account of the location).

24

Figure 13: His tory aggregation

Results Aggregation

After the calculation of the history the recommender is ready to aggre gate web sites for the first

recommendation. Without user input, meaning no tag was selected or entered manually, the web

site database collection can only be queried by location. The cached history is merged with the list of

web sites resulted from the location-based query.

Available user input changes the type of querying the website collection. Like shown in Figure 14, we

got two database requests after this tag, one of them additionally with the current location of the

user. The results of the location query are sorted by a weight which is calculated by the distance

between object and users location. However, the weight of the query based only on users input is

calculated by the importance of this tag for this object. Detailed information on tag/keyword

database search functions is given later.

Similar to the history calculation this weighted results are merged together with corresponding

factors given through changeable recommender settings. In the final step the results are additionally

weighted by the cached history. This means that if a website is popular at the moment it can be

found in a top position in the resulting list of websites.

25

Figure 14: Webs ite Recommender dataflow

Keyword Aggregation

Keywords which are recommended to a user are aggregated by the keyword recommender. The

most important keyword selection is the first one, because this decides if a user can directly select

one which reduces the number of user interaction. If no presented tag is near the topic the user is

searching for, he needs to enter a keyword manually which must be avoided.

A good first tag representation is again a mix out of different sources. First a selection of all keywords

the user was searching for in the past is computed, and also the same for all users. Second the

database lookup additionally depends on the current location. So we want to know what this user or

all users have recently searched at this location. Like shown in Figure 15 all this four database results

are merged together the same way explained in history aggregation.

This final keyword history is then combined with keywords belonging to recommended web sites.

Without user input, which is the case at startup of the application, most tags comes from tag history

or near websites. As soon as we got user input the merged tag history is only used to adjust the

weight of keywords coming from website recommender. This leads to a selection process as the user

26

always gets presented a set of tags that reduce the current set of web sites. Of course, as a keyword

is selected, the whole results recommendation process is started again which results in a completely

new set of keywords again.

Figure 15: Keyword Recommender dataflow

27

The API / Communication Interface
The application programming interface provides a unified and secure way to access the Local

Browsing system. The API is described in a separate document and can be used by independent

developers to develop applications that make use or further extend the Local Browsing System.

The main aspect of the communication interface is the communication between the server and the

Local Browsing application but it also provides support for other application, for e xample

WebNear.me. It is based on a HTTP session which is created the first time an external communication

device connects to the server. The session is managed by the Apache Tomcat service 5 and includes

several servlets. The three most used of them are:

 StartSessionServlet which is first called to create a user.

 UpdateServlet to update any states e.g. the location.

 ResultServlet to get the new calculated results from the recommenders.

The communication protocol

A standard procedure for a new created communication session from the LB application to the server

looks as follows:

1. The application on the phone connects to the server and starts a new HTTP session.

2. The name of the user and his/her location (if available) is sent.

3. Regular requests or updates.

After saving the user identity in step 2 a new object is created which consists of all useful results for

this session, for example precalculated recommender results. For more information about the

detailed communication protocol see the Local Browsing REST-API Reference.

The Logging System
The logging system is the main means of debugging on the server. Depending on the level selected,

various outputs are omitted that give insight about the system. These outputs include:

 User information: Anonymized information about users accessing the system or trying to do

so.

 Database information: Information about database queries, results, response times and

more.

 Error and warnings log: System failures and warnings, e.g. when someone tries to abuse the

system.

For this the well know logging Java library log4j6 is used and embedded in the server code. The

output of all log entries are forwarded to:

 A separated log-database.

 A file, which is used if the database fails somehow. Only a limited amount of critical log

entries are saved in this file.

 The standard java output console, used for debugging on a local machine.

5 tomcat.apache.org. August 2012
6 logging.apache.org/log4j/2.x. August 2012

http://tomcat.apache.org/
http://logging.apache.org/log4j/2.x/

28

The Job System
The job system offers a flexible way of running different programs on the system. Jobs include but

are not limited to:

 Crawl jobs: Jobs that crawl the internet and store information retrieved in the database.

 Cache jobs: Jobs that take data from the crawler databases and put them in a new form

which is easier and faster to run queries against.

 Clean up jobs: Jobs that clean up the database by removing entries that proved to be of no

value.

 One time jobs stored in a configurable queue.

The job manager is the main controller and holds access to all existing jobs. This manager uses the

quartz job scheduler7 which is an easy to use open source job scheduling service library for Java.

The Database Interface
The database interface was developed to make the underlying database transparent. At the moment

the open source NoSQL database MongoDB8 is used on the server, but by using the interface, which

acts as an additional abstract layer, the underlying database could be replaced easily given the

interface functions are implemented correctly.

Data types

The most basic object used for most calculations and results is the LBObject. It defines the

fundamental properties which every result object must have. All more specific objects are children of

this object for example a Website-object. The following table gives a summary of these important

properties.

ID The unique ID created and used by the database.

Source Every crawler puts its identifier as source if this object is new created. Also
other sources (e.g. user) exist.

Import State This state defines if the object is fully imported or already deleted from
search results (e.g. because of a broken URL).

Name A meaningful, readable and short title for this object which can be
presented to users.

Locations A list of locations corresponding to this object.

Description The description of an object, help users to identify the one they are
searching for.

Keywords All keywords are stored in a list with string and weight.

Meta Information Detailed meta information (for example from http meta tags) .
Table 6: Bas ic data type for a l l searchable objects

7 www.quartz-scheduler.org. August 2012
8 www.mongodb.org. August 2012

http://www.quartz-scheduler.org/
http://www.mongodb.org/

29

At the moment the most used child class of the above shown LBObject is the Website-object. The

following table gives a short overview of the specific fields.

URL The unique URL where the web site is hosted.

Domain Domain name with top domain (e.g. google.ch).

Subdomain Everything in front of domain (e.g. www or docs).

Title HTTP title of this website (also stored in meta information).

Rating Internal rating score.

Website Type If we got multiple hits from the same domain, it is important to order them
in a logic way, for example the website structure itself. So we have two
types PARENT and CHILD websites.

Table 7: Speci fied data type for the webs i te object

Functions

The most important class for accessing the database is the interface called IDbAccess. It defines all

possible access functions to the database and all classes outside of this domain will only use this

interface to communicate with the database. Most of the functions defined in this interface are

made to gather information from the database and for storing information. Gathering information is

often a complex process combining multiple tables, thus they are often cached within the program to

minimize the loading times for often used information.

The following table shows an example of some important database access functions.

Function Definition Parameters Returns

getWebsitesNearLocation Gets a list of Website
around a given Location

Location,
Limit

List of websites weighted
and sorted by the distance

getWebsitesWithKeywords Gets a list of Website
including the given
Keywords

List of
Keywords,
Limit

List of websites weighted
and sorted by importance of
given keywords

getHistoryLatestPrivate Gets History from user UserID,
Limit

List of websites weighted
and sorted by number of
visits

Table 8: Example functions of database interface

Database Structure

The database is mainly divided into three different collections:

 Website collection: All Website objects are stored in this collection.

 History collection: All History objects are stored in this collection. Because of the large

number of history entries produced by the users, this collection grows really large. Most of

the functions which gathering information in a complex way from this collection have to limit

their search scope to remain efficient.

 User collection: This small collection stores all different user IDs and some user dependent

properties e.g. familiar places.

30

MongoDB

There are different reasons for choosing MongoDB9 in this case. First, it is a document-oriented

storage which helps to indicate objects from the internet. Every URL is mapped i n one database

document with meta-information and keywords completed with statistics, page rank and many

more. The second but more important reason is native handling of coordinates. Most documents are

attached with one or more locations (stored as tuple of latitude and longitude) and MongoDB

provides different functions to search for them. There are commands like $near which returns all

documents near a given location and attach the calculated distance to them.

9 www.mongodb.org. August 2012

http://www.mongodb.org/

31

Results

This section describes the results gained from comparing the application to different other search

engines that can be used on mobile devices. The comparison is done by searching for different

websites, counting the number of clicks required to get to the desired result. The tests are performed

on a Windows Phone device. Text input clicks are counted separately, as those buttons usually are

very small and text input is cumbersome. Testers are asked to give a rating on the perceived

usefulness of the results.

As most of the search engines tested use some sort of user history to determine the importance of

data sets for a given user, the test results vary for each user. Also, all results could of course be

obtained on several different search paths, so the average shortest path (from all the test users)

found is chosen for all the search engines.

The search queries come from different areas, mainly the four different areas described in the

problem definition section. Those areas are of particular interest on a phone.

In the following the different test scenarios are presented in more detail.

Any Bar Close by (Starting at Zurich Main Station)
The intention of this test is to see how long it takes a user to find any interesting bar close to his

location. This situation could arise in the evening when you want to find a nice place, check its web

site first, to see if the bar fits your needs.

 Local Browsing Google Bing Local.ch Nokia Places

Number of
Clicks

2 1 1 2 1

Number of
Keyboard
Inputs

0 0 3 3 4

Number of
Results

20+ 10+ 20+ 10+ 15

Perceived
Usefulness

10 10 7 8 7

Comments Sparse data in
Zurich

No view on
map, only list

Table 9: Comparison of search engines for searching any bar close by

32

Spaghetti Factory (at Location 47.37/8.54)
The user is searching for a particular restaurant to make a reservation. The test is conducted two

times, one time the user is close to the desired restaurant, the other time he sits at home (far away).

Location Close to Restaurant

 Local Browsing Google Bing Local.ch Nokia Places

Number of
Clicks

4 2 3 2 2

Number of
Keyboard
Inputs

0 4 4 17 3

Number of
Results

15 20+ 4+ 7 4

Perceived
Usefulness

8 7 4 5 5

Comments Only shows
global web
site, no
location

Only phone
number and
location

Doesn’t show
web site

Table 10: Comparison of search engines for searching a speci fic restaurant near by

At Home

 Local Browsing Google Bing Local.ch Nokia Places

Number of
Clicks

5 2 3 2 2

Number of
Keyboard
Inputs

0 4 4 17 3

Number of
Results

15 20+ 4+ 7 4

Perceived
Usefulness

6 7 4 4 5

Comments Only shows
global web
site

Table 11: Comparison of search engines for searching a speci fic restaurant

33

NZZ (Accessed Before)
The user doesn’t want to type in the website name of a particular website but instead searches for it

(with the intention of this being faster than entering the URL). The website has been accessed

before, probably many times.

 Local Browsing Google Bing Local.ch Nokia Places

Number of
Clicks

1 2 2 2 2

Number of
Keyboard
Inputs

0 1 2 3 3

Number of
Results

20+ 20+ 4+ 16 2

Perceived
Usefulness

10 10 9 8 1

Comments Shows links to
topics

 Shows
additional
information

Only shows
location of
bureau

Table 12: Comparison of search engines for searching a speci fic news porta l

Anything Interesting Close by
The user walks around bored and would like to be entertained, probably with something that gives

him ideas what to do around his current location. The desired result is a website that has an

entertaining value to the user.

 Local Browsing Google Bing Local.ch Nokia Places

Number of
Clicks

1 - - 1 -

Number of
Keyboard
Inputs

0 - - 0 -

Number of
Results

20+ - - 20+ -

Perceived
Usefulness

10 0 0 6 0

Comments No browsing
possibility

No browsing
possibility

Shows close
objects, only
ordered by
distance

No browsing
possibility

Table 13: Comparison of search engines for searching anything interesting close by

34

Train Schedules at Zurich Main Station
The user just arrived at Zurich main station for the first time and would like to get the train

schedules. The desired website would be sbb.ch, zvv.ch or anything similar.

 Local Browsing Google Bing Local.ch Nokia Places

Number of
Clicks

2 2 2 2 2

Number of
Keyboard
Inputs

0 1 3 3 3

Number of
Results

20+ 20+ 4+ 20+ 20

Perceived
Usefulness

10 10 7 5 1

Comments Shows direct
links to topics

 Shows travel
agencies close
by

Shows train
stations
around Zurich,
no web sites

Table 14: Comparison of search engines for searching tra in schedules at Zurich Main Station

Telephone Number of Co-Worker
The scenario is that a user wants to find the telephone number of a co-worker in the same building.

The co-workers name has 13 characters and phone number is published on corporate website.

 Local Browsing Google Bing Local.ch Nokia Places

Number of
Clicks

1 2 2 - -

Number of
Keyboard
Inputs

5 8 13 - -

Number of
Results

10 20+ 4+ - -

Perceived
Usefulness

10 9 6 1 1

Comments No web
content, tel.
nr. not
publically
registered

No web
content

Table 15: Comparison of search engines for searching a phone number of co -worker in the same bui lding

35

Conclusion

As is clearly visible from the results section, Local Browsing succeeds in reducing the amount of clicks

needed to find results. The reduction ranges from only marginal to quite drastic, depending on the

nature of the search. For the classical depth search used to solve a single very constrained problem

the widespread typed keyword search approach is still suited, however, for a lot of searches the

browsing / filtering approach leads to less user input needed. As these searches are of greater

importance on mobile devices, the Local Browsing solution is an improvement on the currently

available solutions.

The results where Local Browsing stands out in comparison to other solutions include objects that

are close to the user’s location, that are of general or personal interest or that are situation

dependent. These object were already stated in the problem definition section as primarily

interesting on mobile devices. In addition, Local Browsing changes user input from keyboard input to

tile input which is a lot easier to do on a small device without a physical keyboard.

However, the results do not show some of the drawbacks of the Local Browsing solution, which have

to be tackled in the future:

 Assigning locations to objects: A lot of content on the web doesn’t have any location tags.

This is not restricted to content that has no connection to any physical location, but also to

objects that do not provide the location in any computer-readable form.

 Data set size: Indexing the web is a huge task. In the scope of this thesis we limited the

indexing to a certain set of web sites that users accessed during usage of the system and a

set of web sites specifically crawled for the thesis. The lack of data gives the system a hard

stand against other systems that have indexed a lot more objects.

 Keywords: Keywords are recommended based on their occurrences together with other

keywords on the same web site. Semantic connections and connections learned from user

search queries are disregarded at the moment. Also, as the whole system is based around

the recommendation of interesting keywords, there is almost no limit to evaluating different

systems and approaches to recommend keywords. Whilst the Local Browsing approach in

this thesis is simple and clean, there might be others that outperform the current system.

All summed up, search on mobile devices will change in the future. The Local Browsing system is a

new combination of current search technologies and new approaches, making use of information

specifically found on mobile devices. As Local Browsing only targets mobile devices, it was possible to

design the application from scratch, giving room for innovative concepts. The resulting application is

appealing, fast and fun, outperforms other search applications in certain areas and provides a

considerable alternative to current applications.

36

Outlook

In a first step to improve Local Browsing itself, the above discussed issues have to be treated:

 Assigning locations to objects: Locations could be extracted from text, from linked web sites

or from meta information. Also, locations could be assigned to objects counting where users

access them the most. Currently getting implemented on top of Local Browsing is SALT [8],

an engine that uses the text found on web sites to assign locations to them.

 Data set size: One approach to increase the available data is always setting up more

computing power and storage space and let the crawler index the web. This is very resource

intensive though, which makes other approaches attractive:

o Using already existing search providers like Google or Bing and make calls on their

APIs, fetching keywords from their results and use it to improve the Local Browsing

solution. However, API calls are limited by amount and probably also by thei r further

usage (by general terms and conditions).

o Improving the crawler in a way that it searches only for web sites that have an easily

identifiable location (as this is one of the main differences for mobile search). Also,

one could crawl only at domain level (internal site navigation can be crawled if users

show interest in site or is completely left to the user). This results from the fact that

users of mobile search often only want the web site of a place they’re visiting, but

will search for more information on the web site themselves anyways.

o Another possibility to limit the enormous quantity of data to be crawled is to

concentrate on a niche in search results. Anyway, to compete against top dogs like

Google providing a search interface for specified areas like news articles from local

news providers or social media postings can be a good choice.

 Keywords: Local Browsing already now stores extensive information about word occurrences

and relationships. This information can be used to extract word semantics, which further can

be used to make better recommendations (of keywords and web sites). Other approaches

would be to include publically available semantics databases or to extract semantics from

user search queries (by analyzing which keywords turn up together often in user search

queries).

Not discussed in the results section, but considerable extensions of Local Browsing include:

 Expanding the objects space to not only include web sites, but also objects like news,

telephone numbers, public transportation schedules, and more. These objects can easily get

a location assigned, whereupon they turn up if the user is close by and / or searches for the

keywords. Even objects that have no location but are no web site can easily be integrated in

the Local Browsing solution, as it allows to search / filter for basically any object.

 Update the user interface so that tiles already show peek previews of what’s going to

happen. This could be a preview of the new keywords, or the results, some images, or more.

 The user application could allow to directly interact with objects. As an example a tile or a

result entry could contain a telephone number which would be dialed automatically upon

clicking it.

37

 It should be tested if the results section is really necessary, or if the results could be included

in the tags themselves, possibly by coloring them differently. This would make the constant

switching and refining of tags obsolete.

 User guidance can be researched. As the user is mostly guided by the keywords the sy stem

recommends, this influence can be used to make the user get to certain results, which can be

attractive for advertisement.

Local Browsing was designed in a way to make such extensions easily possible, whilst still providing

all basic functionality.

Acknowledgements

We’d like to thank our supervisor Dr. Fabio Magagna for his assistance, for providing the paper the

whole thesis is based upon and his useful ideas and insights. Also, to Professor Bernhard Plattner for

taking an active part in the thesis by giving feedback and input throughout various meetings and for

Professor Juliana Sutanto for making the thesis possible.

Our thanks also go to Nokia Switzerland, namely Simon Schweingruber for providing us with

assistance and support concerning Windows Phone development and for providing us with developer

licenses and devices.

Last but not least friends and family who tested the application, gave feedback and ideas and

listened to hours and hours of babbling about search engines.

38

References

[1] K. Church, B. Smyth, P. Cotter and K. Bradley, "Mobile information access: A study of emerging

search behavior on the mobile Internet," ACM Transactions on the Web (TWEB), 2007.

[2] M. Kamvar, M. Kellar, R. Patel and Y. Xu, "Computers and iphones and mobile phones, oh my!: a

logs-based comparison of search users on different devices," in Proceedings of the 18th

international conference on World wide web, Madrid, Spain, 2009.

[3] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke and S. Raghavan, "Searching the Web," in ACM

Transactions on Internet Technology, August 2001.

[4] K. Church, B. Smyth, K. Bradley and P. Cotter, "A large scale study of European mobile search

behaviour," in Proceedings of the 10th international conference on Human computer interaction

with mobile devices and services, 2008.

[5] F. Magagna, A. Gasimov and J. Sutanto, "Mobile Search Engine as a Business Model," in

International Conference on Electronic Commerce, Honolulu, Hawaii, August 2010.

[6] A. Gasimov, F. Magagna and J. Sutanto, "CAMB: Context-Aware Mobile Browser," in Proceedings

of the 9th ACM SIGMOBILE Conference on Mobile and Ubiquitous Multimedia , Limassol, Cyprus,

December 2010.

[7] F. Magagna and J. Sutanto, "Reeco: A privacy-safe mobile context aware recommender system,"

International Journal of Computer Engineering, 2012.

[8] F. Maganga, B. Hess and J. Sutanto, "Building Location-Aware Web with SALT and Webnear.me,"

in Procedia Computer Science, Elsevier, August 2012.

[9] F. Magagna, Why web search on mobile phones is web browsing OR A concept for a real mobile

search engine, Zurich, 2011.

[10] A. Zubiaga, "Content-based clustering for tag cloud visualization," in Social Network Analysis and

Mining, 2009. International Conference on Advances in Networks Analysis and Mining, Madrid,

Spain, July 2009.

[11] M. Baldauf and R. Simon, "Getting Context on the Go – Mobile Urban Exploration with Ambient

Tag Clouds," in Proceedings of the 6th Workshop on Geographic Information Retrieval, Zurich,

Switzerland, Februar 2010.

[12] G. Salton, Automatic text processing: the transformation, analysis, and retrieval of information

by computer, Addison-Wesley Longman Publishing Co. , 1989.

[13] D. Ahlers and S. Boll, "Urban web crawling," in Proceedings of the first international workshop on

Location and the web, Beijing, China, April 2008.

39

[14] B.-R. Blattner, "B-Rank: A top N Recommendation Algorithm," in Proceedings of International

Multi-Conference on Complexity, Informatics and Cybernetics, August 2009.

[15] S. Brin and L. Page, "The Anatomy of a Large-Scale Hypertextual Web Search Engine," in Seventh

International World-Wide Web Conference, Brisbane, Australia, April 1998.

[16] F.-H. Wang and S.-Y. Jian, "An Effective Content-based Recommendation Method for Web

Browsing Based on Keyword Context Matching," Journal of Informatics & Electronics, pp. 49-59,

November 2006.

[17] D. C. Robbins, B. Lee and R. Fernandez, "TapGlance: Designing a Unified Smartphone Interface,"

in Designing Interactive Systems, 2008.

[18] K. Church, J. Neumann, M. Cherubini and N. Oliver, "The "Map Trap"?: an evaluation of map

versus text-based interfaces for location-based mobile search services," in Proceedings of the

19th international conference on World wide web, Raleigh, USA, 2010.

[19] A. Karlson, G. Robertson, D. Robbins, M. Czerwinski and G. Smith, "FaThumb: A facet -based

interface for mobile search," in Proceedings of CHI, 2006.

[20] S. Lohmann, J. Ziegler and L. Tetzlaff, "Comparison of Tag Cloud Layouts: Task-Related

Performance and Visual Exploration," in Proceedings of the 12th IFIP TC 13 International

Conference on Human-Computer Interaction: Part I, 2009.

[21] K. Church and B. Smyth, "Who, what, where & when: a new approach to mobile search ," in

Proceedings of the 13th international conference on Intelligent user interfaces , Gran Canaria,

Spain, 2008.

LB REST-API Reference
Version 0.2.x

The following topics offer a detailed reference of the REST API used for the Local Browsing
Backend project running on a server. The version is depending on the API version. For more

information see the changelog at the beginning.

1/29

Changelog
Version 0.2.x

● The Update Resource responds now with a list of new tags and their weights.
● The Results Resource responds now with a list of LbObjectMapping instead of a list of

LbObject.
● The History Resource does not accept a LbObjectId anymore. Instead it requires a

valid URL (String) in form of a HistoryObjectMapping.
● Added new Type Reference for LbObjectMapping.
● Added new resource references for Crawler Resource, Website Lookup Resource, Job

Resource and Settings Resource.

Version 0.1.x

● The Update Resource does not require a parameter (all optional).
● The Results Resource accepts now a new parameter (“locationonly”).
● The Data Upload Resource has been removed. Instead one can use the History

Resource.
● Added new Type References for HistoryObjectMapping, Location,

LbObjectType, Feedback, UserAction and LogEntry.
● Added HTTP Response Status Codes.
● General improvements of all articles.

2/29

http://en.wikipedia.org/wiki/Uniform_resource_locator

Contents

The Start Session Resource
Resource URI
Resource Parameters
The GET Method

Response Media Type
Expected Response Status Codes
Request Example
Request Response Example

The Update Resource
Resource URI
Resource Parameters
The GET Method

Response Media Type
Expected Response Status Codes
Request Example
Request Response Example

The Results Resource
Resource URI
Resource Parameters
The GET Method

Response Media Type
Expected Response Status Codes
Request Example
Request Response Example

The History Resource
Resource URI
Resource Parameters
The POST Method

Request Media Type
Response Media Type
Expected Response Status Codes
Request Example
Request Body Examples
Request Response Example

The Crawler Resource
Resource URI
Resource Parameters
The GET Method

Response Media Type
Expected Response Status Codes
Request Example
Request Response Example

The Log Resource
Resource URI
Resource Parameters
The GET Method

Response Media Type
Expected Response Status Codes

3/29

Request Example
Request Response Example

The Job Resource
Resource URI
Resource Parameters
The GET Method

Response Media Type
Expected Response Status Codes
Request Example
Request Response Example

The Settings Resource
Resource URI
Resource Parameters
The GET Method

Response Media Type
Expected Response Status Codes
Request Example
Request Response Example

The Website Lookup Resource
Resource URI
Resource Parameters
The GET Method

Response Media Type
Expected Response Status Codes
Request Example
Request Response Example

HTTP Response Status Codes
Type Reference

LbObjectMapping
Media Type URI
Base Attributes
JSON Representation Example

HistoryObjectMapping
Media Type URI
Base Attributes
JSON Representation Example

Location
Media Type URI
Base Attributes

LbObjectType
Media Type URI
Base Attributes

Feedback
Media Type URI
Base Attributes

UserAction
Media Type URI
Base Attributes

LogEntry
Media Type URI
Base Attributes

4/29

JSON Representation Example
Date

Media Type URI
Format
JSON Representation Example

5/29

The Start Session Resource
The start session resource is used to handle a new created session. This resource is called, if a
user starts a new local browsing search and connects the session with the user.

Resource URI
/start?userid=...&[lat=...]&[long=...]&[acc=...]

Resource Parameters

Parameter Type Description

userid String; required The unique user ID for this session.

lat Number (double); optional The latitude of the updated location; Also
requires a valid longitude.

long Number (double); optional The longitude of the updated location; Also
requires a valid latitude.

acc Number (positive double);
optional

The accuracy of the location.

The GET Method
The GET method provides nothing; It only processes the request data and returns status codes.

Response Media Type
-

Expected Response Status Codes
On successful completion, the resource responds with status code 200 OK.
For a complete list of possible response status codes, see HTTP Response Status Codes.

6/29

Request Example

GET http://localhost:8080/api/start?
userid=C9WAFi6WXeKP9hCfIiEyVvJdYl4=&lat=47.378127&long=8.53981&acc=1.
5

Request Response Example

-

7/29

The Update Resource
The update resource is used to handle new inputs from a local browsing search session and
returns new tags based on the update, which can be a new/removed tag or a new/updated
location.

Requires a valid session created with the start session resource.

Resource URI
/update?[tag=...]&[removetag=...]&[lat=...]&[long=...]&[acc=...]

Resource Parameters

Parameter Type Description

tag String; optional A new tag for the current local browsing search
session. There can be multiple tags in one
request.

removetag String; optional A tag to be removed in the current local browsing
search session. There can be multiple tags in
one request.

lat Number (double); optional The latitude of the updated location; Also
requires a valid longitude.

long Number (double); optional The longitude of the updated location; Also
requires a valid latitude.

acc Number (positive double);
optional

The accuracy of the location.

The GET Method
The GET method provides a list of weighted new/updated tags based on the current state of
selected tags and location.

Response Media Type
HashMap <String, Integer>

Expected Response Status Codes
On successful completion, the resource responds with status code 200 OK.
For a complete list of possible response status codes, see HTTP Response Status Codes.

8/29

Request Example

GET http://localhost:8080/api/update?
tag=SBB&tag=HB&removetag=hotel&lat=47.378127&long=8.53981&acc=1.5

Request Response Example

[
 {"mittagstisch":16},
 {"essen":23},{"news":23},
 {"mittagessen":24},
 {"events":19},
 {"windows":16},
 {"hotel":68},
 {"bar":19},
 {"restaurant":56},
 {"city":15}
]

9/29

The Results Resource
The results resource is used to return all calculated Local Browsing-objects
(LbObjectMapping) from the current search session.

Requires a valid session created with the start session resource.

Resource URI
/results?[prettyprint]

Resource Parameters

Parameter Type Description

prettyprint none; optional If this tag is set, the answer will be pretty printed
instead of a regular JSON String. Only used for
debugging.

The GET Method
The GET method provides all calculated Local Browsing-objects (LbObjectMapping) in a list
as JSON-Strings.

Response Media Type
java.util.List<ch.ethz.mis.lb.server.web.mappings.LbObjectMapping>
in short: List<LbObjectMapping>

Expected Response Status Codes
On successful completion, the resource responds with status code 200 OK.
For a complete list of possible response status codes, see HTTP Response Status Codes.

Request Example

GET http://localhost:8080/api/results?prettyprint

10/29

Request Response Example

[
 {
 "name": "ETH Zürich",
 "locations": [
 {
 "latitude": 47.376732,
 "longitude": 8.547943
 }
],
 "description": "lorem ipsum",
 "distance": 26.0,
 "weight": 0.9826300767314771,
 "lbObjectType": "WEBSITE",
 "lbObjectProperties": {
 "title": "ETH Zürich",
 "url": "http://www.ethz.ch"
 }
 },
 {
 "name": "SBB",
 "locations": [
 {
 "latitude": 47.377974,
 "longitude": 8.539895
 }
],
 "description": "lorem ipsum",
 "distance": 636.0,
 "weight": 0.3096588273457692,
 "lbObjectType": "WEBSITE",
 "lbObjectProperties": {
 "title": "SBB",
 "url": "http://www.sbb.ch"
 }
 }
]

11/29

The History Resource
The history resource is used to handle history updates from users which includes new Local
Browsing-objects from various sources (e.g. the user, WebNearMe, ...)

Requires a valid session created with the start session resource.

Resource URI
/history

Resource Parameters
-

The POST Method
The POST method provides nothing; It only processes the request data and returns status
codes.

Request Media Type
ch.ethz.mis.lb.server.web.mappings.HistoryObjectMapping
in short: HistoryObjectMapping

Response Media Type
-

Expected Response Status Codes
On successful completion, the resource responds with status code 200 OK.
For a complete list of possible response status codes, see HTTP Response Status Codes.

Request Example

POST http://localhost:8080/api/history

12/29

Request Body Examples

{
 "url": "http://www.ethz.ch",
 "lbObjectType": "WEBSITE",
 "dateTime": "2012-06-12T17:18:14+0200",
 "location": {
 "latitude": 8.54458,
 "longitude": 47.38191
 },
 "userAction": "FEEDBACK",
 "parameters": {
 "feedback": "POSITIVE",
 "past_url": "www.google.ch",
 "someOtherParameter": "someValue"
 }
}

Request Response Example

-

13/29

The Crawler Resource
The crawler resource is used to handle location crawler requests.

Resource URI
/crawl?[lat=...]&[long=...]&[tag=...]

Resource Parameters

Parameter Type Description

lat Number (double); required The latitude of the updated location; Also
requires a valid longitude.

long Number (double); required The longitude of the updated location; Also
requires a valid latitude.

The GET Method
The GET method provides nothing; It only processes the request data and returns status codes.

Response Media Type
-

Expected Response Status Codes
On successful completion, the resource responds with status code 200 OK.
For a complete list of possible response status codes, see HTTP Response Status Codes.

Request Example

GET http://localhost:8080/api/crawl?lat=47.378127&long=8.53981

Request Response Example

-

14/29

The Log Resource
The log resource is used to handle log requests and returns a specific part of the current log as
JSON String.

This is an internal resource and only visible/accessible in a password secured private
area.

Resource URI
/backend/log?[level=...]&[lines=...]&[skip=...]&[date=...]

Resource Parameters

Parameter Type Description

level String; optional
[default: “DEBUG”]

The minimum log level to be
shown. It has to be one of the
following: “TRACE”, “DEBUG”, “INFO”, “WARN”,
“ERROR” and “FATAL”

lines Number (positive integer);
optional [default: 100]

The maximum number of log lines to be
returned.

skip Number (positive integer);
optional [default: 0]

The number of log lines which are skipped.

date String; optional [default:
current date]

The date from which the previous number of log
lines are returned.

The GET Method
The GET method provides a specific part of the current logs as JSON-string.

Response Media Type
see LogEntry

Expected Response Status Codes
On successful completion, the resource responds with status code 200 OK.
For a complete list of possible response status codes, see HTTP Response Status Codes.

15/29

Request Example

GET http://localhost:8080/api/backend/log?
level=info&lines=2&date=2012-06-12T17:18:14%2B0200

Request Response Example

[
 {
 "timestamp" : { "$date" : "2012-06-12T13:30:14.866Z"},
 "level" : "INFO",
 "message" : "Logger is initialized",
 "method" : "init",
 "lineNumber" : "62",
 "class" :
{ "fullyQualifiedClassName" : "ch.ethz.mis.lb.server.controller.log.I
nitializeLog4j"}
 },
 {
 "timestamp" : { "$date" : "2012-06-12T13:19:29.717Z"},
 "level" : "WARN",
 "message" : "No user id for this session found!",
 "method" : "doGet",
 "lineNumber" : "61",
 "class" :
{ "fullyQualifiedClassName" : "ch.ethz.mis.lb.server.web.ResultsServl
et"}
 }
]

16/29

The Job Resource
The job resource is used to handle job requests, such as starting new one-time jobs.

This is an internal resource and only visible/accessible in a password secured private
area.

Resource URI
/backend/job?[job=...]&[name=...]&[group=...]&[command=...]

Resource Parameters

Parameter Type Description

job String, optional* One of the following jobs:
cleanupdb, crawl, ratewebsite,
locationcrawl, cleanupdbextensive,
onetimecrawl, periodic

name String, optional* The name of the job used for the command.

group String, optional* The group name of the job used for the
command.

command String, optional* One of the following commands:
run, interrupt, pause, resume,
unschedule

* Requires at least a valid job or a valid triple [name, group and command]

The GET Method
The GET method provides nothing; It only processes the request data and returns status codes.

Response Media Type
-

Expected Response Status Codes
On successful completion, the resource responds with status code 200 OK.
For a complete list of possible response status codes, see HTTP Response Status Codes.

17/29

Request Example

GET http://localhost:8080/api/log?job=periodic

Request Response Example

-

18/29

The Settings Resource
The settings resource is used to handle new setting values and saves them in the settings file.

This is an internal resource and only visible/accessible in a password secured private
area.

Resource URI
/backend/settings?[see Resource Parameters]

Resource Parameters

Parameter Type Description

maximumKeywordResults Integer,
optional

Maximum Keyword Results sent
back

maximumParallelLocationCrawlers Integer,
optional

Maximum Parallel Location
Crawlers

recommenderScaleInput Double,
optional

Recommender Scale Input

recommenderScaleHistory Double,
optional

Recommender Scale History

recommenderScaleSituation Double,
optional

Recommender Scale Situation

recommenderScaleLocation Double,
optional

Recommender Scale Location

recommenderScaleTags Double,
optional

Recommender Scale Tags

recommenderScaleUserHistory Double,
optional

Recommender Scale User History

recommenderScaleUserLocationHistory Double,
optional

Recommender Scale User Location
History

recommenderScaleGeneralHistory Double,
optional

Recommender Scale General
History

recommenderScaleGeneralLocationHistory Double,
optional

Recommender Scale General
Location History

19/29

recommenderScaleUser Double,
optional

Recommender Scale User

recommenderScaleGeneral Double,
optional

Recommender Scale General

collSizeFHistory Integer,
optional

Number of results for F_his()
function

collSizeFLocation Integer,
optional

Number of results for F_loc()
function

collSizeFTag Integer,
optional

Number of results for F_tag()
function

familiarPlacesRadius Double,
optional

Familiar Places Radius in meter

lbObjectNearRadius Double,
optional

Local browsing Object Near Radius
in meter

generalNearRadius Double,
optional

General History Near Radius in
meter

privateNearRadius Double,
optional

Private History Near Radius in
meter

generalHistoryDaysBack Integer,
optional

General History Days Back

privateHistoryDaysBack Integer,
optional

Private History Days Back

The GET Method
The GET method provides nothing; It only processes the request data and returns status codes.

Response Media Type
-

Expected Response Status Codes
On successful completion, the resource responds with status code 200 OK.
For a complete list of possible response status codes, see HTTP Response Status Codes.

Request Example

GET http://localhost:8080/api/settings?
maximumKeywordResults=12&privateNearRadius=1337.00

20/29

Request Response Example

-

21/29

The Website Lookup Resource
The website lookup resource is used to handle informations about websites.

Resource URI
/lookup?[url=...]&[lat=...]&[long=...]

Resource Parameters

Parameter Type Description

url String; optional* The unique URL of the website.

lat Number (double);
optional*

The latitude which is needed to find all websites in
the near; Also requires a valid longitude.

long Number (double);
optional*

The longitude which is needed to find all websites
in the near; Also requires a valid latitude.

* Requires at least a valid location (latitude and longitude) or a valid url

The GET Method
The GET method provides a list of LbObjectMapping. The content of this list can be:

1. If there is a given url, the list contains exactly one LbObjectMapping (with the given url).
2. If there is a given location, the list contains 30 LbObjectMapping which are near the

given location.

Response Media Type
java.util.List<ch.ethz.mis.lb.server.web.mappings.LbObjectMapping>
in short: List<LbObjectMapping>

Expected Response Status Codes
On successful completion, the resource responds with status code 200 OK.
For a complete list of possible response status codes, see HTTP Response Status Codes.

Request Example

GET http://localhost:8080/api/lookup?url=http://www.starbucks.ch

22/29

http://en.wikipedia.org/wiki/Uniform_resource_locator

Request Response Example

[
 {
 "name": "Starbucks",
 "locations": [
 {
 "latitude": 47.3724,
 "longitude": 8.54397
 }
],
 "description": "",
 "distance": -1.0,
 "weight": -1.0,
 "lbObjectType": "WEBSITE",
 "lbObjectProperties": {
 "title": "",
 "url": "http://www.starbucks.ch"
 }
 }
]

23/29

HTTP Response Status Codes

Status Code Description

200 OK Successful completion.

400 BAD REQUEST One or more parameters are not valid (e.g. String instead of
double) or there are missing required parameters.

401 UNAUTHORIZED The session has no valid user.

500 INTERNAL
SERVER ERROR

An uncatched exception or some other fatal errors occurred.

24/29

Type Reference
This section includes the definitions of most of the used media types.

LbObjectMapping

Media Type URI
ch.ethz.mis.lb.server.web.mappings.LbObjectMapping

Base Attributes

Attribute Type Description

name String The name (title) of a local browsing object
(e.g. webpage).

locations List<Location> The list of all locations of this object (e.g.
multiple locations for a shop).

description String The description of this object.

distance Double The distance between the current location
and the location of this object.

weight Double The weight (importance) of this object.

lbObjectType LbObjectType The type of this object (e.g. Webpage).

lbObjectProperties Map<String, String> Additional properties of the object depending
on the LbObjectType.

JSON Representation Example

{
 "name": "ETH Zürich",
 "locations": [
 {
 "latitude": 47.376732,
 "longitude": 8.547943
 }
],
 "description": "lorem ipsum",
 "distance": 26.0,
 "weight": 0.9826300767314771,
 "lbObjectType": "WEBSITE",
 "lbObjectProperties": {
 "title": "ETH Zürich",

25/29

 "url": "http://www.ethz.ch"
 }
 }

HistoryObjectMapping

Media Type URI
ch.ethz.mis.lb.server.web.mappings.HistoryObjectMapping

Base Attributes

Attribute Type Description

url String The unique URL of the corresponding
LbObject for this history entry.

lbObjectType LbObjectType The type of the corresponding LbObject for
this history entry (e.g. Webpage).

dateTime Date The date and time when this HistoryObject
was created.

location Location The location of the user when he/she created
this object.

userAction UserAction The user action which created this
HistoryObject.

parameters Map<String, String> Additional properties of the HistoryObject.

JSON Representation Example

{
 "url": "http://www.ethz.ch",
 "lbObjectType": "WEBSITE",
 "dateTime": "2012-06-12T17:18:14+0200",
 "location": {
 "latitude": 8.54458,
 "longitude": 47.38191
 },
 "userAction": "FEEDBACK",
 "parameters": {
 "feedback": "POSITIVE",
 "past_url": "www.google.ch",
 "someOtherParameter": "someValue"
 }
}

26/29

http://en.wikipedia.org/wiki/Uniform_resource_locator

Location

Media Type URI
ch.ethz.mis.lb.server.objects.Location

Base Attributes

Attribute Type Description

latitude Double The latitude of a location

longitude Double The longitude of a location

LbObjectType

Media Type URI
ch.ethz.mis.lb.server.objects.LbObjectType

Base Attributes

Enum Type Description

WEBSITE(1) enum (Integer) The enum which represents a website.

Feedback

Media Type URI
ch.ethz.mis.lb.server.objects.Feedback

Base Attributes

Enum Type Description

POSITIVE(1) enum (Integer) The enum which represents a positive
feedback.

NONE(0) enum (Integer) The enum which represents no feedback.

NEGATIVE(2) enum (Integer) The enum which represents a negative
feedback.

27/29

http://en.wikipedia.org/wiki/Latitude
http://en.wikipedia.org/wiki/Longitude

UserAction

Media Type URI
ch.ethz.mis.lb.server.objects.UserAction

Base Attributes

Enum Type Description

BUTTON_PRESSED enum The enum which represents that the user
pressed a button as action.

LINK_OPEN enum The enum which represents that the user
opened a link as action.

NONE enum The enum which represents no action.

FEEDBACK enum The enum which represents that the user
gave a feedback as action.

LogEntry

Media Type URI
none

Base Attributes

Attribute Type Description

timestamp Date The date when this log entry was created.

level String The log level which could be one of the
following: “TRACE”, “DEBUG”, “INFO”, “WAR
N”, “ERROR” and “FATAL”.

message String The message of this log entry.

method String The method name in which the log entry was
created.

lineNumber Integer The line number in which the log entry was
created.

class String The fully qualified class name of the class in
which the log entry was created.

28/29

JSON Representation Example

{
 "timestamp" : { "$date" : "2012-06-12T16:51:47.958Z"},
 "level" : "WARN",
 "message" : "Wrong formated latitude",
 "method" : "doGet",
 "lineNumber" : "93",
 "class" :
{ "fullyQualifiedClassName" : "ch.ethz.mis.lb.server.web.StartSession
Servlet"}}

Date

Media Type URI
java.util.Date

Format
yyyy-MM-dd'T'HH:mm:ssZ

JSON Representation Example

"2012-06-27T14:45:37+0200"

29/29

	Problem Definition
	Related Work
	Existing Solutions
	Comparison Framework
	Google Mobile Search
	Local.ch
	Browser (Embedded Search Provider)
	Nokia Maps

	The Local Browsing Solution
	System overview

	User Interface Frontend
	Schematic Overview
	The Implementation

	Server Backend
	Server Backend Overview
	MVC - Model View Controller
	Overview of the most important functions

	The Crawler
	The Domain Statistics Collection
	The URL Collection
	The Word Collection
	The Web Site Collection
	How the Crawler Works

	The Recommender
	History Aggregation
	Results Aggregation
	Keyword Aggregation

	The API / Communication Interface
	The communication protocol

	The Logging System
	The Job System
	The Database Interface
	Data types
	Functions
	Database Structure
	MongoDB

	Results
	Any Bar Close by (Starting at Zurich Main Station)
	Spaghetti Factory (at Location 47.37/8.54)
	Location Close to Restaurant
	At Home

	NZZ (Accessed Before)
	Anything Interesting Close by
	Train Schedules at Zurich Main Station
	Telephone Number of Co-Worker

	Outlook
	Acknowledgements
	References

